skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tavakoli-Kivi, Saman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Salinity is one of the most common water quality threats in riverbasins and irrigated regions worldwide. However, no available numericalmodels simulate all major processes affecting salt ion fate and transport at the watershed scale. This study presents a new salinity module for the SWAT model that simulates the fate and transport of eight major salt ions(SO42-, Ca2+, Mg2+, Na+, K+, Cl−,CO32-, HCO3-) in a watershed system. The module accountsfor salt transport in surface runoff, soil percolation, lateral flow,groundwater, and streams, and equilibrium chemistry reactions in soil layersand the aquifer. The module consists of several new subroutines that areimbedded within the SWAT modelling code and one input file containing soilsalinity and aquifer salinity data for the watershed. The model is appliedto a 732 km2 salinity-impaired irrigated region within the ArkansasRiver Valley in southeastern Colorado and tested against root zone soilsalinity, groundwater salt ion concentration, groundwater salt loadings tothe river network, and in-stream salt ion concentration. The model can be auseful tool in simulating baseline salinity transport and investigatingsalinity best management practices in watersheds of varying spatial scales. 
    more » « less